NICHOLAS ARAKI HOWELL, PHD **APR 21 2021 GEOHEALTH NETWORK & CANUE SEMINAR SERIES**

I declare no financial or professional conflicts of interest

I declare no personal conflicts of interest, except that I am a pedestrian/cyclist who lives downtown NB some images removed from posted version

NB some images removed of the slides

Learning Objectives

• Review a theoretical framework for how the built environment can influence cardiovascular disease risk Describe prior work demonstrating associations between the built environment and cardiovascular disease risk factors Analyze how built environment and air pollution exposures may jointly affect risk for diabetes and hypertension

Outline

• About me • What is the built environment? • Why would the built environment affect health? • Could the built environment meaningfully affect cardio-metabolic health? • How might the built environment interact with other environmental factors to affect cardio-metabolic health?

ABOUT ME

HBSc 2011

Psychology, Philosophy, Political Science

MSc 2013

Neuroscience/Medical Science

MD/PhD Program PhD 2019 MD 2021 Clinical Epidemiology PhD: Built Environments & Cardiovascular Health

HBSc 2011

Psychology, Philosophy, **Political Science**

MSc 2013

Neuroscience/Medical Science

MD/PhD Program PhD 2019 MD 2021

Clinical Epidemiology PhD: Built Environments & Cardiovascular Health

Residency

Internal Medicine

WHAT IS THE BUILT ENVIRONMENT?

The Built Environment

"Built environments are the totality of places built or designed by humans, including buildings, grounds around buildings, layout of communities, transportation infrastructure, and parks and trails." Sallis et al., 2012

Walkability

 Measure of how supportive an area is for engaging in (transportation) physical activity in daily life

Think D-variables
Density (of housing, jobs)
Destinations (within walking distance)
Diversity (of land use)
Design (of streets, streetscapes)

WHY WOULD THE BUILT ENVIRONMENT AFFECT HEALTH?

How is the built environment supposed to affect health?

 macro and meso environments Economical level Income and wealth inequilibria -Political and administration Welfare system Cultural background 	ualities tive factors	
Neighborhood spatial location	factors	
Local residential and nonreside	ential environments	(Direct eff
-Socioeconomic -Population den -Population turr	blic structure position sity nover	Experiential fai Experiential neighborhood
-Ethnic compos Physical environment -Building appearance and disposition -Street network -Other outdoor/indoor public spaces -Greenery/aesthetic quality -Physical decay	ition Services -Transportation -Food environment -Sport facilities -Healthcare resources -Density of destinations	 Affective ex -Attachment Sense of com Feeling of rel Residential ca Internalized s Cognitive ex Evaluations a related (dis)s
Neighborhood interactions -Networks of ne -Weak ties/stron -Social cohesion -Social disorder -Neighborhood -Neighborhood -Knowledge, no	social eighbors ng ties n/fragmentation identities stigma orms, culture	 Relational et -Mistrust/host -Stressful inter -Social integra -Neighboring -Social support

Chaix, 2009

(Selective migration)

How is the built environment supposed to affect health?

Chaix, 2009

How is the built environment supposed to affect health?

Chaix, 2009

COULD WALKABILITY MEANINGFULLY AFFECT...

	5% lowest values of environmental features	5% highest values of environmental features	Differences in weekly minutes of MVPA between lowest 5% and highest 5% values of environmental correlate (95% CI)	Lowest average study-city value for environmental features	Highest average study-city value for environmental features	Differences in weekly minutes MVPA between lowest and high average study-c values of environmental features (95% C
Net residential density—1·0 km buffer	710	21078	49 (15–86)*	1658·0	57322.0	89 (29–16
Public transport density—1·0 km buffer	0	35	33% of PAG	2.2	29.1	59% of PAC
Net residential density—0·5 km buffer	652	28 917	48 (6–78)†	1669.0	57276.0	68 (11–144
Public transport density—0.5 km buffer	0	46	32% of PAG	2.4	33.3	45% of PAC
Number of parks contained or intersected by 0·5 km buffer	0	6		0.6	7.4	

Sallis et al., 2016

Physical activity?

	5% lowest values of environmental features	5% highest values of environmental features	Differences in weekly minutes of MVPA between lowest 5% and highest 5% values of environmental correlate (95% CI)	Lowest average study-city value for environmental features	Highest average study-city value for environmental features	Differences in weekly minutes MVPA between lowest and high average study-c values of environmental features (95% C
Net residential density—1·0 km buffer	710	21078	49 (15–86)*	1658·0	57322.0	89 (29–16
Public transport density—1·0 km buffer	0	35	33% of PAG	2.2	29.1	59% of PAC
Net residential density—0·5 km buffer	652	28 917	48 (6–78)†	1669.0	57276.0	68 (11–144
Public transport density—0.5 km buffer	0	46	32% of PAG	2.4	33.3	45% of PA0
Number of parks contained or intersected by 0·5 km buffer	0	6		0.6	7.4	

Sallis et al., 2016

Physical activity?

Creatore et al., 2016

Physical activity?

Walking or bicycling

Could walkability meaningfully affect... **Obesity/overweight?**

Creatore et al., 2016

	Quintile	e Wa	lkability s 1 (0-12.0	score mec 04) (least	lian (rang walkable	je)
	2	1 3.	7 (12.05	-15.22)		
	3	• 16.	8 (15.23	-18.60)		
	4	2 0.	9 (18.61	-25.49)		
	5	• 35.	2 (25.50	-100) (m	ost walka	able)
05	2006	2007	2008	2009	2010	2011-
	Year					2012 ^a

Creatore et al., 2016

Diabetes?

	Quintil 1 2 3 4 5	e Wa 10 13 16 20 35	alkability .1 (0-12. .7 (12.05 .8 (15.23 .9 (18.61 .2 (25.50	score me 04) (leas 5-15.22) 3-18.60) 1-25.49) 0-100) (m	dian (rang t walkable nost walka	ge) e) able)
2006	2007	2008	2009	2010	2011	2012
Ye	ar					

Chiu et al., 2016

Hypertension?

Moved from Low to High Walkability

> Moved from Low to Low Walkability

Howell et al., JAHA (2019)

Howell et al., JAHA (2019)

Howell et al., JAHA (2019)

Walkability and CV Risk Factors - Conclusions

have a meaningful effect on cardiovascular health

• Relationships between walkability and most established cardiovascular risk factors

• Based on prior work, it seems possible that the built environment could

Could the built environment meaningfully affect CV health — Conclusions

• But conceptual frameworks in built environment literature frequently highlight the inter-relationships between different contextual factors

• Despite this, there has been little work examining potential interactions between walkability (and other built environment factors) and other contextual variables

BUILT ENVIRONMENT INTERACTIONS WITH OTHER ENVIRONMENTAL FACTORS

Walkability & Traffic Related Air Pollution

• Associations between higher walkability and higher air pollution^{1,2}

Several air pollutants are established risk factors for CVD

• May predispose individuals in walkable neighbourhoods to higher cardiovascular risk

¹Marshall, Brauer, Frank, 2009; ²James et al., 2015; ³Cepeda et al., 2017

Walkability (Vancouver) & Traffic Related Air Pollution

¹Marshall, Brauer, Frank, 2009

Walkability (USA) & PM_{2.5}

James et al., 2015

IS THERE ANY INTERACTION BETWEEN TRAFFIC-RELATED AIR POLLUTION AND WALKABILITY ON CARDIOVASCULAR RISK FACTORS?

Design, Setting & Population

• Setting

 Major urban centres in Southern Ontario (2008)

• Data Sources • Health Administrative Databases

 Population CANHEART cohort

Design

Data sources CANHEART Cohort

Study Design Cross-sectional

Walkability

Assessed at neighbourhood level

Validated index composed of
(i) population density
(ii) dwelling density
(iii) number of destinations and
(iv) street connectivity

Center of residential area
 10 min walking buffer from centre of residential area
 Walkable destination

Exposure - Traffic-related Air Pollution

Assessed using land use regression model for surrogate pollutant (NO₂)

• Linked to individuals using postal codes

- **Data: CANUE& Environment Canada's National Air Pollution Surveillance** Network
 - Land use
 - Meterological
 - Satellite imaging

Outdoor NO₂ (2006) $R^2 = 0.73$

Walkability & NO₂ in Toronto

All-Region Spearman Rho = 0.44

Walkability & NO₂ in Ottawa

All-Region Spearman Rho = 0.44

Associations B/W Walkability, NO2 & Hypertension, Diabetes					
N = 2,496,458	Hypertension	Diabetes Mellitus			
Variable/Statistic	Joint OR (95% CI)	Joint OR (95% CI)			
Walkability Quintile					
Q1 (Lowest)	1.34 (1.32, 1.37)	1.25 (1.22, 1.29)			
Q2	1.33 (1.30, 1.35)	1.21 (1.18, 1.24)			
Q3	1.29 (1.27, 1.31)	1.19 (1.17, 1.22)			
Q4	1.19 (1.17, 1.21)	1.16 (1.13, 1.19)			
Q5	Ref	Ref			
Traffic-related air pollution (NO ₂) (per 10 ppb)	1.09 (1.08. 1.10)	1.16 (1.14, 1.17)			

Adjustment variables

Age, sex, ethnicity, immigration history, neighbourhood income

Associations B/W Walkability, NO2 & Hypertension, Diabetes				
	Hypertension	Diabetes Mellitus		
Variable/Statistic	Joint OR (95% CI)	Joint OR (95% CI)		
Walkability Quintile				
Q1 (Lowest)	1.34 (1.32, 1.37)	1.25 (1.22, 1.29)		
Q2	1.33 (1.30, 1.35)	1.21 (1.18, 1.24)		
Q3	1.29 (1.27, 1.31)	1.19 (1.17, 1.22)		
Q4	1.19 (1.17, 1.21)	1.16 (1.13, 1.19)		
Q5	Ref	Ref		
Traffic-related air pollution (NO ₂) (per 10 ppb)	1.09 (1.08. 1.10)	1.16 (1.14, 1.17)		

Adjustment variables

Age, sex, ethnicity, immigration history, neighbourhood income

	Hypertension	Diabetes Mellitus
Variable/Statistic	Joint OR (95% CI)	Joint OR (95% CI)
Walkability Quintile		
Q1 (Lowest)	1.34 (1.32, 1.37)	1.25 (1.22, 1.29)
Q2	1.33 (1.30, 1.35)	1.21 (1.18, 1.24)
Q3	1.29 (1.27, 1.31)	1.19 (1.17, 1.22)
Q4	1.19 (1.17, 1.21)	1.16 (1.13, 1.19)
Q5	Ref	Ref
Traffic-related air pollution		
(NO ₂) (per 10 ppb)	1.09 (1.08. 1.10)	1.16 (1.14, 1.17)

Adjustment variables

Age, sex, ethnicity, immigration history, neighbourhood income

Walkability & Traffic-related Air Pollution - Conclusions diabetes

of hypertension and diabetes

Significant interaction between two exposures

• Protective associations between walkability and risk factors are not seen in the most polluted environments

• Low walkability associated with higher likelihood of hypertension and

• High traffic-related air pollution associated with increased likelihood

Strengths & Limitations

Limitations

 Cross-sectional design Cannot adjust for self-selection Unmeasured confounders/residual confounding

• Strengths Large, population-based sample from multiple regions Use of validated measures of key variables

Overall Implications

Encouraging development of new walkable neighbourhoods may promote physical activity and improve population cardiovascular health

 Facilitate re-development of existing neighbourhoods to permit more mixed use and density

Help facilitate links between unwalkable and walkable neighbourhoods

Strategies to ameliorate pollution in walkable neighbourhoods

SUMMARY

 More walkable neighbourhoods associated with improved cardiovascular disease risk factor profiles

 Walkability and traffic related air pollution jointly affect likelihood of cardiovascular disease risk factors

More walkable neighbourhoods associated with increased physical activity

Summary

 Increasing housing density, number and types of services, and encouraging connected street networks may increase population physical activity and improve cardiovascular risk factors

 But we need to consider how other environmental factors play a role in shaping urban cardiovascular health

Acknowledgements

Supervisor Committee Collaborators Dr. Gillian Booth Dr. Jack Tu Dr. Hong Chen Dr. Rahim Moineddin
 Dr. Perry Hystad Dr. Robert Fowler **Centre for Urban Health Solutions** U of T MD/PhD Dr. Jane Polsky Anna Chu Dr. Ghazal Fazli **IHPME/Dalla Lana** CANUE Peter Gozdyra SAUSy Lab Anne-Marie Tynan Dr. Michael Widener Canadian Institutes of

ICES Central

U of T Geo. **Dr. Steve Farber** Ashley Jones **Health Research** Instituts de recherche Bourses dietudes supérieures du Cahada Vanie en santé du Canada Canada Graduate

THANK YOU! QUESTIONS?

